Relativistic laser-plasma interaction with prepulse generated liquid metal microjets

D.S. Uryupina, K.A. Ivanov, A.B. Savel'ev
(International Laser Center, Moscow State University of M.V. Lomonosov)
A.V. Brantov, V.Y. Bychenkov
(P.N. Lebedev Physical Institute of the Russian Academy of Sciences)
Outline

✓ Introduction
✓ Experimental setup
✓ Contrast effect
✓ Optical pump-probe experiments
✓ 3D3P PIC simulations
Introduction

A micro-structured target with an intensity of $I < 10^{17} \text{W/cm}^2$ shows a huge enhancement in: hard x-ray yield and hot electron energy.

For intensities of $I > 10^{17} \text{W/cm}^2$, a preplasma is generated.

Our approach involves a liquid metal target with a repetition rate up to 1 kHz.
Outline

✓ Introduction
✓ Experimental setup
✓ Contrast effect
✓ Optical pump-probe experiments
✓ 3D3P PIC simulations
Experimental setup

x-ray detectors (PMT with NaI(Tl) scintillator, Si-PIN Amptek XR-100CR

half-wave plate

laser pulse from Ti:Sa laser system

\(\tau = 55 \, \text{fs} \)

\(\lambda = 800 \, \text{nm} \)

\(E = 1 \, \text{mJ} \)

I \approx 10^{17} \, \text{W/cm}^2

10 \, \text{Hz}

contrast 10^{-400} \approx 10^{6}
Ga plasma x-ray spectrum

$I = 10^{17}$ W/cm2

- K_{α} (Ga) – 9.3 keV
- K_{β} (Ga) – 10.3 keV
- K_{α} (Cu) – 8.4 keV
Outline

- Introduction
- Experimental setup
- Contrast effect
- Optical pump-probe experiments
- 3D3P PIC simulations
X-ray yield nanosecond contrast dependence

Best results at pulse contrast ~50

Corresponding prepulse energy – 20uJ
Comparison with solid targets

Hot electrons temperature, keV

- s-polarized, Ga
- p-polarized, Ga
- p-polarized, Si
- s-polarized, Si
- p-polarized, SiO$_2$
- s-polarized, SiO$_2$
K_α yield contrast dependencies

- K_α yield vs. pre-pulse amplitude
- K_α/X-yield (>6 keV) vs. pre-pulse amplitude

Legend:
- p-polarized
- s-polarized
Outline

✓ Introduction
✓ Experimental setup
✓ Contrast effect
✓ Optical pump-probe experiments
✓ 3D3P PIC simulations
Optical pump-probe shadowgraphy

Delay 1-15 ns

KDP 96%

BS 4%

CCD

Pulse energy 200 uJ that corresponds to the contrast of 0.2 in main experiments
Dense microjet formation
Outline

✓ Introduction
✓ Experimental setup
✓ Contrast effect
✓ Optical pump-probe experiments
✓ 3D3P PIC simulations
Electron acceleration along jets

Laser pulse
- Duration 50 fs
- Focal spot 3 um
- intensity $5 \times 10^{16} - 10^{18}$ W/cm2

Target:
- Proton + electrons
- Density 10^{22} cm$^{-3}$
- Thickness 1 um

Jet:
- Protons + electrons
- Density 10^{22} cm$^{-3}$
- Jet length 5 um
- Jet diameter 0.5 um

Preplasma:
- Proton+electrons
- Density changes from 0 to 1.2×10^{21} cm$^{-3}$
- Thickness 4 um
Electron acceleration along jets
Electron acceleration along jets
Electron acceleration along jets
Electron acceleration along jets
Electron from 3D3P PIC modeling

--- no jet
--- with jet

5x10^{16} \text{ W/cm}^2

10^{18} \text{ W/cm}^2
Conclusions

- Action of the pre-pulse leads to formation of micro jets of liquid metal. This enhances hot electron energy and hard x-ray yield from the plasma.

- Our approach opens up the road to implementation of new schemes for electron and ion acceleration at much higher, relativistic intensities.
Thank you for your attention!